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Abstract: Solar forecasting constitutes a critical tool for operating, producing and storing generated
power from solar farms. In the framework of the International Energy Agency’s Photovoltaic Power
Systems Program Task 16, the solar irradiance nowcast algorithms, based on five all-sky imagers
(ASIs), are used to investigate the feasibility of ASIs to foresee ramp events. ASIs 1–2 and ASIs 3–5
can capture the true ramp events by 26.0–51.0% and 49.0–92.0% of the cases, respectively. ASIs 1–2
provided the lowest (<10.0%) falsely documented ramp events while ASIs 3–5 recorded false ramp
events up to 85.0%. On the other hand, ASIs 3–5 revealed the lowest falsely documented no ramp
events (8.0–51.0%). ASIs 1–2 are developed to provide spatial solar irradiance forecasts and have been
delimited only to a small area for the purposes of this benchmark, which penalizes these approaches.
These findings show that ASI-based nowcasts could be considered as a valuable tool for predicting
solar irradiance ramp events for a variety of solar energy technologies. The combination of physical
and deep learning-based methods is identified as a potential approach to further improve the ramp
event forecasts.

Keywords: all-sky imagers; solar irradiance ramp event forecasting; ramp events; forecasting

1. Introduction

Solar irradiance constitutes the most abundant renewable energy source available.
However, solar resource is highly variable, mainly because of clouds, often leading to
abrupt changes in solar power generation. For this reason, solar forecasting is considered a
valuable tool for the operation of solar technologies. It can support the solar technologies’
operation and integration by using the incoming solar resource to the fullest and improving
grid stability.

In the literature, there is no commonly accepted formal definition of a ramp event
(RE). A solar irradiance (or power) RE can be defined as an event with a sudden change in
solar irradiance (or power) within a short time interval. In particular, an accurate definition
depends on the user and the corresponding application [1]. Simplistically, ramps can be
identified by calculating the absolute power difference between the starting and ending
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point of a timeframe [1–3]. However, power changes may occur suddenly and consecutively,
and not necessarily between the starting and ending timeframe points. The former issue
can be addressed by calculating the difference between the minimum and maximum power
values within a pre-defined timeframe [1,2]. Alternatively, power REs can be estimated
using the power ramp rate (RR) between the starting and ending points at a specific time
interval [2]. Power RR, in particular, is the derivative of power over a time interval. All the
mentioned RE-detection definitions rely on the user’s need for setting a threshold limit to
discriminate an RE from a no-RE.

Solar power systems have mechanisms in place to handle small amounts of uncertainty
and variability; however, emphasis is placed on forecasting extreme events, the so-called
solar ramp events. Solar REs can be divided into two main categories: a) solar irradiance
REs and b) solar power REs [4]. Several studies dedicated to solar RE detection exist
in the literature. Regarding solar power REs, Abuella and Chowdhury [5] presented an
adjusting approach that combines the forecasts derived from different algorithms using an
ensemble technique to calculate the solar power RRs on an hourly basis and based on them
to estimate the solar power REs. The same methodology of RE detection is also followed by
Kong et al. [6] in terms of power forecasts from multiple deep-learning models coming from
measurements derived from all-sky imagers (ASIs). Florita et al. [7] implemented a dynamic
programming methodology using the Swinging Door (SD) algorithm [8] to identify solar
and wind power REs. SD estimates the REs by applying a piecewise linear approximation
consisting of only one tunable parameter (ε) that defines the magnitude of the ramp. The SD
algorithm has also been adopted to define a new ramp metric [9] comparing the extracted
slopes from the SD algorithm between the forecasts and the measurements within specific
time frames. As a next step, the SD algorithm was optimized [10] and implemented for
wind and solar power RE detection [4]. Abuella and Chowdhury [11] also utilized several
machine-learning classification algorithms to predict REs using solar power forecasts and
weather predictions as model inputs.

Several studies regarding solar irradiance REs exist in the literature. Reno and
Stein [12] investigated the correlation between the cloud type derived from satellite im-
ages and solar irradiance variation. Chu et al. [13] calculated solar irradiance nowcasts
by combining the cloud information from a fisheye dome network camera with neural
networks. In order to exclude the impact of diurnal solar variability on RE detection,
they predicted the REs at a 10 min time horizon using the ASI-based nowcasted solar
irradiances in conjunction with clear-sky measurements. Following Chu et al. [13], Cardas
and Alonso-Suárez [14] detected REs using ASIs and different solar irradiance forecasting
algorithms. Their findings showed that the forecast’s performance in true RE detection
is best for high ramp magnitudes and short forecast lead times. Although the accurate
forecasting of the abrupt solar irradiance fluctuations is of great importance, relatively few
studies have adequately focused on this scientific area, implying a research gap and the
necessity of deeper research in this specific domain.

This study is a step forward in a benchmarking exercise conducted in the framework
of the International Energy Agency’s Photovoltaic Power Systems Program (IEA PVPS)
Task 16. IEA constitutes an autonomous body under the framework of the Organization for
Economic Cooperation and Development. The IEA PVPS’s overreaching goal is to enhance
the international collaborative efforts that investigate the key role of photovoltaic solar
energy in the transition to sustainable energy systems. The first benchmarking exercise
was focused on the state-of-the-art solar irradiance nowcasting derived from a bouquet of
ASI-based methodologies [15]. The campaign took place at CIEMAT’s Plataforma Solar
de Almería (PSA) in southern Spain, where four different ASI systems were installed and
measured from August to November 2019. The validation findings highlighted the quite
good performance of ASIs concerning nowcast solar irradiance regardless of the under-
lying cloud conditions. The principal objective of this second benchmarking exercise is
to investigate the feasibility of ASI nowcasts in RE prediction. Section 2 presents a brief
description of the applied data and the implemented methodologies. Section 3 describes
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the methodology of solar irradiance RE detection. Finally, the results and conclusions are
presented in Sections 4 and 5, respectively. Since solar forecasting has become an indispens-
able aspect of solar power system technologies, the presented study aims to evaluate the
ability of ASI nowcasts to become a valuable tool for solar irradiance RE prediction.

2. Forecast Algorithms and Ancillary Measurements

Global horizontal irradiance (GHI) is nowcasted up to 20 min ahead in 1 min temporal
resolution by four ASI systems. Within the measurement campaign, 28 days from Septem-
ber to November 2019 at PSA in southern Spain were selected to validate GHI nowcasts,
including various atmospheric conditions (e.g., cloud types, total aerosol load, etc.). During
the campaign, six main cloud clusters (CCs) were detected using visual inspection, varying
from almost clear-sky days (CC: 1) to overcast cloud conditions (4A). Table 1 presents the
selected cloud clusters. For each CC, the evaluation days cover about 50% of the total
available days of the corresponding CC. Only the forecasts for solar zenith angles (SZAs)
lower than 70◦ are retained for subsequent analysis to avoid low sun and shading effects.

Table 1. Cloud clusters and the corresponding number of available evaluation days.

Acronym Cloud Types Dates in 2019
September October November Total

1 Cloud-free (or almost cloud-free) 24, 29 6, 10, 26, 29 8, 18 8
2L Scattered/broken cloudiness with Low clouds 8 7 2
2M Scattered/broken cloudiness with Multiple clouds 12, 23, 30 1, 14, 20, 26 7
2H Scattered/broken cloudiness with High/Middle clouds 1, 7, 18 6, 19, 28 6
3H Scattered/broken cloudiness with High/Middle clouds 30 5, 17 3

during half of the day, cloud-free during the other half
4A Overcast cloud conditions during half of the day, 20 21 2

scattered/broken cloudiness during the other half

Solar irradiance data are acquired from ground-based instruments for the training
and evaluation of the applied algorithms. The METAS station in PSA (latitude: 37.09◦ N,
longitude: 2.36◦ W) has an automated sun tracker with a sun sensor. More specifically,
the sun tracker is equipped with a shaded ISO 9060 class A spectrally flat pyranometer
for measuring DHI and a pyrheliometer for measuring DNI. DNI and DHI data were
implemented by some ASI systems during the forecasting algorithm calculations. In
addition, GHI measurements directly derived from an unshaded ISO 9060 class A spectrally
flat pyranometer are used for the algorithms’ evaluation and for the persistence-based
algorithm’s calculations.

Five nowcasting methodologies were implemented using these four camera setups,
varying the used camera type, cloud segmentation and forecast algorithm. Moreover,
a physics-based smart persistence model was also used in RE analysis. The following
sub-sections give a brief overview of each ASI and persistence-based algorithm. Detailed
information is presented in Logothetis et al. [15].

2.1. ASI1 and ASI2

GHI nowcasts from the ASI1 and ASI2 systems are obtained following specific consec-
utive physical steps using two ASIs located at a distance of about 900 m to each other. The
two algorithms differ in the applied cloud-detection methodology. For ASI1, the cloudy
pixels in the captured images are classified using a clear sky library [16] and for ASI2 a
convolutional neural network [17] is used. Then, the cloud base height (CBH) and cloud
motion vectors (CMVs) are assessed by cross-correlation of features derived from three
consecutive images [18]. Clouds are modeled as three-dimensional objects by comparing
the cloudy pixels in conjunction with CBH, and they are tracked in the direction of the
CMVs to foresee their future position [19]. The cloud shadow’s location on the ground is
predicted by ray tracing [20]. Thus, a shadow map is created.
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GHI is nowcasted by modeling the radiative effect of clouds as follows. Direct normal
irradiance (DNI) and direct horizontal irradiance (DHI) are measured at METAS. Linke
turbidity as well as current and future clear sky DNI are derived from recent measurements
of DNI by a clear-sky-detection algorithm that analyses the DNI time series [20]. In addition,
a probabilistic approach estimates the transmittance of each cloud object based on recent
and historical CBH and DNI [21]. Then, DNI is assigned to the shadow map based on
clear-sky DNI and the transmittance of the cloud object that shades a grid cell. DHI is
treated as spatially homogeneous and persistent. From the nowcasted DNI map and the
measured DHI, a nowcasted GHI map is calculated. Lastly, the ASI forecast is merged
with a spatial GHI persistence approach [22] that weights both sources according to the
inverse of the root mean square deviation (RMSD) of their recent forecasts. The ASI1 and
ASI2 are based on a two camera system, which provides spatial GHI information with a
coverage beyond 60 km² and a spatial resolution of 20 m. However, in the context of this
benchmark, only the information of a single point with a coverage of 20 × 20 m was taken
into account. This was necessary as only ASI1 and ASI2 of all participants provide spatial
information. However, this ignored relevant benefits of these two systems and at the same
time penalized the physical approach by means of geolocalization of clouds.

2.2. ASI3

ASI3 uses a hybrid model to forecast GHI up to 20 min with one minute intervals.
Under clear-sky conditions, a clear-sky model is used to forecast GHI. More specifically, the
applied algorithm is originated from the model created by Nou et al. [23] to anticipate the
clear-sky DNI and uses the GHI as the only input measurement. It combines an empirical
model with a persistence of the Linke turbidity coefficient assessed in real time from
GHI measurements.

Regarding the other sky conditions (a fully or partially covered sky), GHI is nowcasted
applying a feedforward neural network model (a multilayer Perceptron) which is trained
with the well-known backpropagation algorithm, including as input a sequence of five past
irradiance maps. The number of maps in that sequence was the subject of an optimization
study. These irradiance maps, which represent the distribution of luminance over the sky
vault, are generated each minute from the high dynamic range sky image’s pixel intensities,
angles of incidence and solid angles [24]. Because some pixels in the image were saturated,
GHI measurements were used to correct the irradiance maps.

2.3. ASI4

The ASI4 system implements a Long Short-Term Memory (LSTM) model to nowcast
GHI up to 30 min ahead with one minute intervals [25]. Nevertheless, the nowcasts are
suppressed to up to 20 min ahead for the sake of this analysis, coinciding with the other ASI
systems. ASI4 uses several parameters as an input to the LSTM model. More specifically,
it uses features that are extracted from the ASI-based images like the date time, intensity
(mean grayscale) and the number of cloudy pixels, cloud edges and cloud corners. To
identify the cloudy pixels, the Red-Blue-Ratio (RBR, i.e., RBR = R/B) method is applied
to each image [26]. If an image pixel exceeds the 0.8 RBR value, then it is identified as
cloudy. In addition, the cloud edges and corners are detected by applying the Canny
Edge Detection algorithm [27] and Harris algorithm [28] (using a 3 × 3 filter), respectively.
In addition to the ASI-based characteristics, it also applies inputs such as the measured
GHI, clear-sky GHI, clear-sky index, zenith, azimuth, sun–earth distance, temperature
and humidity. The training period ranges from 1st August to 23rd September (one day
before the benchmark validation period). The training set is divided into two subsets for
hyperparameter tuning and, finally, GHI nowcasts at each day onward are estimated using
a recursive forecast model.
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2.4. ASI5

The ASI5 system uses the information of one industrial camera in conjunction with
two deep learning algorithms. The first deep learning algorithm applies a convolutional
encoder–decoder structure using the camera images and the second produces the GHI
nowcasts by using a recurrent neural network.

2.5. PSPI

The applied persistence model used in the subsequent RE analysis constitutes the Physics-
based smart persistence model for intra-hour forecasting of solar radiation (PSPI) [29]. PSPI
consists of three specific consecutive steps. Firstly, the cloud fraction and albedo are
calculated using the modeled extraterrestrial solar radiation, the solar position and the
ground-based GHI measurements. Secondly, at project time steps (or future SZAs), the
cloud fraction and albedo are predicted assuming the horizontal advection of clouds over
the forecasting area, and constant cloud parameters such as size, shape and thickness
within the forecasting time horizon. Thus, the GHI value is forecasted using the predicted
SZA, cloud albedo and cloud fraction at each corresponding time horizon (1 to 20 min).

3. Methodology
3.1. Characterization of Solar Irradiance Ramp Events

There is more than one definition of solar irradiance REs. The definition of an RE
generally depends on the application. In this study, we aim to consider any case where
transient clouds cause sudden changes of the incoming solar irradiance including both
enhancement and reduction. The REs are detected through the calculation of the derivative
of the normalized GHI (nGHI) from source X (reference measurement or ASI system
forecast) (nGHIX) (Equation (1)) at specific time horizons (ramp rate, RR) (Equation (2)),

nGHIX =
GHIX

εd
, (1)

Ramp Rate = RR(t, D) =
d(nGHIX)

dt
=

nGHIX(t + D)− nGHIX(t)
D

, (2)

where εd is the maximum clear-sky GHI at the top of the atmosphere at each benchmark day,
and nGHIX(t + D) is nGHIX at a future time step with time horizon D for the forecasted
or the measured GHI. In addition, nGHIX(t) refers to the nGHI at the forecast issue time.
The εd is derived from the McClear model [30].

Figure 1 displays the flowchart of the implemented methodology for RE detection. The
ramp events are determined as the exceedances of RR (calculated through steps 2 and 3)
from a specific threshold limit (Thr) derived for each time horizon D through the 99th
quantile of RR at clear skies, based on ground-based observations. In total, 23 days are
considered to specify Thr. The former days are firstly selected by visual inspection of the
all-sky images. Then, a clear-sky-detection methodology [31] is also performed to exclude
potential timeframes with cloud presence.

Figure 2a represents the diurnal distribution of the clear-sky RRs for D = 10 min with
similar results for other D values. During a clear-sky day, the magnitude of RR depends on
the SZA indicating higher GHI variations for high SZAs. Figure 2b shows the Cumulative
Distribution Function (CDF) of the clear-sky RR at D = 10 min. During a clear-sky day, the
magnitude of RR depends on solar geometry indicating higher GHI variations for high
SZAs encompassing a higher amplitude of RR. The 99th percentile of RR at clear skies
represents the selected Thr (vertical line). At this point, the shape of the CDF changes as
it approaches the knee point (Figure 2b), enabling the distinction of clear-sky RRs from
possible cloudy RRs. In cases of many periods with cloud presence during an almost
clear-sky day, a lower percentile for defining Thr should be presented. Therefore, the
implemented methodology neglects the false ramp identification at low or high solar



Energies 2022, 15, 6191 6 of 17

elevations. It is noted that this study focuses on predicting an RE regardless of its direction
(up for positive RR or vice versa).

Figure 1. Flowchart of the applied methodology.

Figure 2. (a) Scatter plot and (b) CDF function of ramp rates (RRs) for clear-sky conditions at time
horizon D = 10 min. The solid black lines indicate the threshold limit (99th quantile) that classifies the
no-ramp (red area) and ramp (green area) events. The blueish color bar refers to the solar zenith angle.

3.2. Sensitivity Analysis of Threshold Limits (Thr)

In this section, the robustness of the identification of REs is examined when changing
the Thr by ±20% (Figure 3a). It is apparent that the number of REs increases for smaller
Thr and vice versa. Nevertheless, the percentage change of measured REs (Figure 3b) for
threshold changes within ±5% remains within ±8%, indicating adequately low variations
around the initial number of REs (99th quantile). This methodology can be modified
appropriately with different Thr levels depending on the application. For instance, if the
purpose is to examine sudden solar irradiance fluctuations, a higher Thr value is desirable.

3.3. Possible Cases

Figure 4 illustrates an exemplary day including both clear and cloudy conditions.
Under mostly clear skies (10:30–15:00 UTC), the applied methodology correctly detects the
no-REs. Within other time frames of this day (up to 10:30 UTC and after 15:30 UTC), the
presence of clouds leads to frequent sudden GHI changes.

The feasibility of ASIs to predict possible REs has been assessed both at specific D and
over the whole 20 min time horizon denoted as “20 min time window analysis” or TW. RE
of the observed GHI is the reference for comparison purposes. Table 2 shows the confusion
matrix for the forecasted REs.
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Figure 3. (a) Total number of measured ramp events and (b) the change of this number caused by
varying the threshold limit (Thr) at each time horizon (D). The vertical axis shows the change of the
threshold limit, whereas the horizontal axis presents D. The color bar displays the number of ramp
events (a) and the change of the number of ramp events (b).

Figure 4. The graph in the upper panel depicts the intra-day GHI variability and the absolute
observed ramp rate values at time horizon D = 1 min derived from the reference pyranometer. The
red horizontal line corresponds to the threshold limit for D = 1 min. The lower four plots show the
detected ramp events based on ground-based measurements in four time intervals: (a) 08:00–10:00,
(b) 10:00–12:00, (c) 12:00–14:00 and (d) 14:00–16:00.
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Table 2. Confusion matrix of possible cases of forecasted ramp events.

Observed Ramp Events

Ramp No-Ramp

R
am

p
Ev

en
ts

Ramp True Ramp (TR) False Ramp (FR)

Pr
ed

ic
te

d
No-Ramp False No-Ramp (FNR) True No-Ramp (TNR)

The diagonal elements of the confusion matrix represent the correctly detected ramp/no-
ramp events (true ramp, TR, and true no-ramp, TNR). The off-diagonal values indicate
erroneous predictions for the presence or absence of RE (false ramp, FR, and false no-ramp,
FNR) using the ASI nowcasts. Regarding the 20 min window analysis, at least one RE
is required (not restricted at the same D) by the ASIs and the measurements to assign a
TR (Figure 5a). If no ramp is detected in the reference and the forecast for the 20 min
window, a TNR is recorded (Figure 5d). FNR is denoted if the ASI nowcasts fail to predict
any RE within the 20 min window although there is a ramp according to the pyranometer
data (Figure 5c). FR is denoted if at least one RE is predicted by the ASIs although no
ramp is found in the pyranometer reference data (Figure 5b). The implementation of the
20 min window to RE detection relies on the possible operational use of ASIs to inform the
end-users about possible sudden GHI fluctuations. Restricting the analysis at specific D
increases the possibility that FNR may cause a rapid reduction in grid power, leading to
financial damages.

Figure 5. Example of ramp rate values within a 20 min window of ASI nowcasts for (a) True Ramp
event (TR), (b) False Ramp Event (FR), (c) False No-Ramp Event (FNR) and (d) True No-Ramp Event
(TNR). The black line refers to the measured GHI. The blue lines correspond to the ramp event
threshold (O symbol) and the calculated absolute ramp rates from ASI forecasts (× symbol) and
measurements (• symbol), respectively.
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3.4. Goodness-of-Fit Statistics of Forecasted Ramp Events

Based on the confusion matrix results (Table 2), the qualitative performance of the
forecasted REs is assessed using the following metrics:

Total Accuracy =
True cases
Total cases

=
TR + TNR

TR + FR + FNR + TNR
, (3)

Precision =
TR

TR + FR
, (4)

Recall =
TR

TR + FNR
, (5)

F1 Score =
2(Precision × Recall)

Precision + Recall
, (6)

4. Results

The results are presented in three sections. Section 4.1 describes the overall perfor-
mance of the predicted REs relying on ASIs and PSPI nowcasts within different time
horizons. Section 4.2 focuses on detecting intra-day REs under various cloud conditions.
Section 4.3 outlines an insightful diurnal look of ASI-based RE detection for selected
CC days.

4.1. Overall Ramp Event-Detection Performance

Figure 6 displays the performance of algorithms in RE detection based on the 20 min
window analysis. In general, forecast algorithms without cloud-cover information usually
predict ramps based on time-interval lags [13,32]. In general, simple persistence model
nowcasts are not able to capture any REs (Figure S1). Thus, the advanced persistence model,
PSPI, used in this analysis predicts RE at times.

Figure 6. Confusion matrix including all possible cases of Table 2 for (a) ASI1, (b) ASI2, (c) ASI3,
(d) ASI4, (e) ASI5 and (f) PSPI. The percentages of each quadrant are calculated based on the true
measured cases (either for ramp or no-ramp events) and refer to the ramp event detection within the
20 min window analysis (see Section 3.3).

The total accuracy, namely the overall percentage of correct nowcasts (Equation (3)),
is given above each confusion matrix (Figure 6). ASI3 and ASI2 show the highest total
accuracy with 80.7% and 78.6%, respectively. Those two ASIs provide a contrasting result
regarding the true RE “hits”. ASI3 outperforms ASI2 in TR event detection by 28.8%, while
ASI2 is superior in TNR event detection by 27.9%. It should be mentioned that ASIs 1–2
systems are developed to provide spatial GHI forecasts and have been delimited only to
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a small area for the purposes of this benchmark, which penalizes the physical approach
by means of geolocalization of clouds. RR-detection rates would increase significantly for
these approaches if spatial information around the test side were considered [33]. Within
the 20 min window analysis, ASI5 (Figure 6e) fails to distinguish the no-REs from the REs
due to highly variable GHI forecasts during the clear-sky days.

Figure 7. Variability of all predicted possible cases of Table 2 as well as at the 20-minute time window
(TW) for (a) ASI1, (b) ASI2, (c) ASI3, (d) ASI4, (e) ASI5 and (f) PSPI. The time horizon begins from
1 min and reaches 20 min in minute-by-minute increments. The percentages of each Table 2 quadrant
are calculated based on the true measured cases (either for the ramp or no-ramp events). TR = True
Ramp, FNR = False No-Ramp, FR = False Ramp and TNR = True No-Ramp.

Figure 7 presents the changes for all possible predicted cases (confusion matrix of
Table 2) for the RE detection at increasing forecast time horizons and the entire time window,
TW. Regardless of the possible cases (e.g., TR), the changes of the metrics with D are more
intense for increasing time horizons and for algorithms based on deep-learning techniques
(Figure 7c–e). Considering the TR events, the percentages of true detected cases decrease
as the time horizon increases due to the reduction of GHI nowcast performance at distant
time horizons (Figure 7). ASI1 and ASI2 can capture the TR cases in percentages ranging
from 26.0% (Figure 7a, ASI1, D = 20 min) to 51.0% (Figure 7b, ASI2, D = 1 min).

Figure 8 shows accuracy, precision, recall and F1 score for the forecasting systems as
a function of D and for TW. As reported by the high precision scores (Figure 8b), ASI1
and ASI2 can avoid the FR “hits” (72.0–93.0%). On the other hand, their inability to detect
some TR cases (FNR) leads to low recall scores Figure 8c, 26.0–39.0%). This behavior is
due to merging of the image-based and persistence-based nowcasts used for ASI1 and
ASI2. While the merging improves conventional error metrics such as RMSD, it reduces
the variability of the forecasted irradiance. For ramp forecasts, an intermediate product of
these ASI systems is advantageous, but this is not included in the evaluation of this work.



Energies 2022, 15, 6191 11 of 17

Figure 8. (a) Total Accuracy, (b) Precision, (c) Recall and (d) F1 Score, for each ASI system and PSPI.
Each metric is calculated at each time horizon D (solid lines) as well as at the 20 min time window
analysis (TW + symbol). The definition of each metric is presented in Section 3.4. All metrics are
presented as percentages.

ASIs 3–5 can capture the TR event case reporting adequate good performances: scores
higher than 50.0% are depicted in Figure 7c–e in most of the cases. The scores range
from 49.0% (Figure 7c, ASI3, D = 20 min) to 92.0% (Figure 7c, ASI3, D = 1 min). Those
algorithms avoid FNR “hits” presenting percentages from 8.0% (ASI3, D = 1 min) to 51.0%
(ASI3, D = 20 min) and Recall scores between 48.0% and 92.0% (Figure 8c). However,
their weakness in no-ramp (TNR) detection is revealed in the moderate precision scores
(Figure 8b, 37.0–66.0%). When comparing the ASIs against the PSPI, ASI-based RE nowcasts
are superior either for TNR (Figure 7a,b, ASIs 1-2) or TR (Figure 7, all ASIs) cases. Using the
metrics mentioned above, the advances and drawbacks of each algorithm are thoroughly
investigated. In addition to those metrics, the F1 Score (Equation (6)) constitutes a valuable
metric that compares the TR against false “hit” cases. For all algorithms except ASI5,
the F1 score decreases as the time horizon increases (Figure 8d). For short time horizons
(D < 10 min), ASI3 outperforms the other algorithms, with F1 score extending from 63.0%
to 71.0%. At higher D, ASI5 shows the best performance, ranging between 56.0% and 66.0%.
Among the algorithms, the PSPI provides the lowest F1 score (Figure 8d, 22.0–43.0%), which
is attributed to two reasons: (1) the relatively low TR percentages and (2) the quite high
FNR percentages. The selection of the most suitable ASI system for solar irradiance RE
nowcasting depends on the application. The different metrics can be used to assist in the
selection of the most adequate system depending on the application.

4.2. Ramp Event-Detection Performance Under Different Cloud Conditions

This section examines the differences in the RE forecast performance under various
cloud conditions. (Figure 9 displays the minute-by-minute variability of the calculated
metrics, as described in Section 3.4, separated into the six CCs (Table 1).
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Figure 9. Total Accuracy (1st column), Precision (2nd column), Recall (3rd column) and F1 Score
(4th column) for cloud clusters: 1 (1st row), 2L (2nd row), 2M (3rd row), 2H (4th row), 3H (5th row)
and 4A (6th row). Each metric is calculated at each time horizon D (up to 20 min, solid lines) and the
20 min time window (TW, star symbol). The definition of each cloud cluster is presented in Section 2.

In terms of total accuracy, the revealed values and the best model’s performance differ
at different cloud conditions. Under almost clear skies (Figure 9, CC: 1, 1st column 1st row),
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ASIs 1–2 and PSPI provide the highest scores (94.0–97.0%). In contrast, under overcast
conditions (Figure 9, CC:4A, 1st column 6th row), ASIs 3–5 outperform the other models
with accuracies ranging from 54.0% (ASI5) to 71.0% (ASI4). The RE-detection performance
findings under the CCs coincide with the nowcast GHI validation analysis (see Figure
3 in Logothetis et al. [15]). For all models, the magnitude of total accuracy is decreased
compared to clear-sky conditions, revealing the increased difficulty in RE detection for days
with scattered clouds during half the day (CC: 3H) or throughout the whole day (2L-2H).
Within the 20 min window analysis, ASI2, ASI3 and ASI5 outperform the other models
in CCs 1 (92.0%) & 3H (85.0%), 2M (88.0%) & 2H (84.0%) and 2L (87.0%) & 4A (88.0%),
respectively. On the other hand, PSPI provides the lowest scores (down to 26% in CC 4A)
in most of the cases.

ASI1, ASI2 and PSPI record the highest precision scores, highlighting their ability
to avoid the FR “hits” independently of the underlying cloud conditions (Figure 9, 2nd
column). For CCs 2L-2H and overcast days, the increase of forecast time horizon indicates
decreasing precision. In contrast, under clear-sky conditions, the increase of time horizon
stands in favor of precision. In addition, the highest recall scores are reported for ASIs 3–5
(Figure 9, 3rd column), indicating their ability to avoid FNR “hits” at each CC. In contrast
to precision, the recall metric decreases with increasing time horizons. The latter behavior
of those algorithms is relevant to the increased FNR cases at distant time horizons. Finally,
the highest F1 scores (Figure 9, 3rd column 2nd-6th rows) are reported for ASIs 3–5, too.

4.3. Intra-Day Variability of Ramp Event Forecasting for Selected Days and ASIs

A representative example for each CC day is also selected to investigate the diurnal
performance of ASI-based RE nowcasts. The 20 min window analysis is applied to estimate
the model’s performance in consecutive 20 min timeframes during each day. Figure 10
represents the results of the intra-day RE-detection variability for specific ASIs.

Figure 10. Intra-day variability of the four possible ramp event-detection cases included in Table 2
for the 20 min window analysis, TW, at selected days and ASIs for cloud cluster: (a) 1, (b) 2L, (c) 2M,
(d) 2H, (e) 3H and (f) 4A. For the sake of clarity and to ensure continuity, the presented 20 min
windows include the ramp event nowcasts having as a starting forecast time point the exact time
(e.g., 08:00, 08:20 UTC, etc.) and containing up to 20 min (e.g., 08:01–08:20, 08:21–08:40 UTC, etc.) in
minute-by-minute increments. The background colors in each graph correspond to the four possible
cases in Table 2. The solid black and cyan lines correspond to measured GHI and model-based GHI
nowcasts within each 20 min window.

During the clear-sky day (CC: 1, Figure 10a), ASI1 can detect the TNR events correctly,
capturing all the cases. Based on Figure 10b (CC: 2L), the scattered cloud conditions
consisting of low height level clouds provide significant GHI changes; thus, most of the
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20 min time windows include RE cases. During the CC 2L day, ASI2, whose algorithm is
based on consecutive physical steps, can detect 15 out of 21 TRE cases and also correctly
capture the two clear-sky timeframes (Figure 10b, 12:20–13:00 UTC).

Similar sudden GHI changes have also been observed during the CC 2M (Figure 10c)
and 2H (Figure 10d) days. In CC 2M, the ASI3 tends to predict the RE cases for the whole
day, showing weakness in avoiding the FR cases when clear-sky 20 min time periods exist
(Figure 10c, 11:20–11:40 UTC etc.). Moreover, the ASI2 system predicts almost all TR cases
(20 out of 21 TR cases) of the CC 2H day correctly (Figure 10d).

The CC 3H day (Figure 10e) is a very insightful case, including a half-day of almost
clear-sky (up to 13:20 UTC) conditions along with a half-day of strong GHI fluctuations
(after 13:20 UTC). On this day, ASI2 nowcasts reveal the best performance among ASIs
regarding the true detected cases, documenting TNR and TR periods at 94.0% (15/16 cases)
and 84.0% (5/6 cases). Similar results are observed for ASI1. During the CC 4A day, half of
the day is under overcast cloud conditions (up to 13:00 UTC), where the detection of GHI
fluctuations is a very challenging fact. The ASI5 relying on solely deep learning techniques
report all the TR cases correctly.

5. Summary and Conclusions

For solar energy-dependent power systems, the ability to nowcast solar resource ramp
events is important. A transient cloud can reduce the available solar energy abruptly,
resulting in significant stability issues. The presented study was conducted within the
framework of IEA PVPS Task 16 and utilizes the results from the first benchmarking exercise
dealing with state-of-the-art solar nowcasting derived from ASIs. The benchmark took
place at CIEMAT’s PSA in southern Spain, where four different ASI systems were installed
and measured from August to November 2019. After validating the ASI-based nowcasts,
their role concerning solar irradiance RE detection was investigated.

For the RE detection, the derivatives of the nGHI are calculated through specific
timeframes (so-called ramp rates, RRs), spanning from 1 to 20 min in minute-by-minute
increments. Next, an RE is defined by comparing the calculated RRs with predefined
thresholds; their values were calculated under clear-sky conditions.

An interesting finding of this study is the connection between the detected ramp
events and the applied ASI-based forecast algorithms. ASIs are able to predict about 55 to
nearly 100% of the ramp events. ASIs 1–2 and 3–5 predict 55–65% and 90% to nearly 100%
of all ramp events, respectively. It should be noted that ASI 1–2 systems were designed to
produce spatial GHI forecasts and were merely confined to a narrow area for the sake of this
benchmark, which penalizes the physical approach, especially by means of geolocalization
of clouds. Including a wider area of GHI forecasts results in a higher true ramp event-
detection performance. ASIs 3–5 show the tendency to falsely predict ramp events, which
happens less often for ASI1 and ASI2. For both categories, the number of true ramp event
cases decreases with increasing forecasting horizon. The total ramp forecast accuracy
reaches up to about 80% for both categories of forecast systems (ASI2, ASI3).

The RE-detection analysis is also performed under different cloud conditions. The
results indicate a strong relationship between the accuracy of the ramp forecast and the un-
derlying cloud conditions. Within the 20 min window analysis, for the days with scattered
cloudiness or overcast conditions, the deep-learning algorithms (ASIs 3–5) outperform
the other algorithms, presenting scores up to 88.0%. In contrast, in days with scattered
cloudiness during half the day and cloudlessness during the other half, the systems that
apply consecutive physical steps outperform the other algorithms.

It is also of interest to compare the findings related to the ramp forecasting accuracy
to an analysis focusing on other conventional forecasting metrics, namely bias, RMSD
and MAD (mean absolute deviation) (see Logothetis et al. [15]). In this previous analysis,
ASI 2 was the system that had the best performance in MAD and RSMD for most cloud
clusters. All ASI systems performed well compared to persistence forecasts and had a
low bias. The physically based systems, ASI1 and 2, outperformed the persistence models
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at all cloud clusters and lead times. For lead times longer than 5 min, the deep-learning
systems (ASIs 3–5) are also efficient enough to outperform the persistence model under
cloudy skies.

The selection of the most suitable ASI system for solar irradiance RE nowcasting
depends on the application. Some systems provide better ramp forecasts in terms of
recall, others in terms of precision or total accuracy of the ramp forecasts, RMSD or MAD.
No single system or system category (e.g., deep learning, or physical) performs best in
all metrics and hence all applications. The different metrics can be used to assist in the
selection of the most adequate system depending on the application. Moreover, these
findings indicate that the combination of several evaluation approaches based on the same
images and radiation data could be beneficial. It might be of interest to provide separate
ramp forecasts, that consider more information than the user can derive from the final
irradiance forecast alone.

The inability of the reference models, like persistence, to capture sudden solar fluctua-
tions demands alternative approaches. This study presents a different means of predicting
solar radiation REs, enabling an in-depth investigation of ASI-based nowcasts. The find-
ings of this study highlight the feasibility of ASI solar irradiance nowcasts in terms of
predicting REs. Therefore, ASI systems could be introduced as an integrated tool for solar
technologies that provide emergency calls during periods of strong power fluctuations,
reducing financial costs and improving efficiency.

Supplementary Materials: The following supporting information can be downloaded at:
https://www.mdpi.com/article/xxx/s1, Figure S1: Variability of all predicted possible cases of
Table 2 as well as at the 20-min time window (TW) for the smart persistence algorithm. The time
horizon begins from 1 min and reaching to 20 min in a minute-by-minute increment. The percentages
of each Table 2 quadrant are calculated based on the true measured cases (either for the ramp or
no-ramp events). TR = True Ramp, FNR = False No-Ramp, FR = False Ramp and TNR = True
No-Ramp.

Author Contributions: Conceptualization, S.-A.L., V.S., B.N., S.W. and A.K.; methodology, S.-A.L.,
V.S., B.N., S.W. and A.K.; software, S.-A.L.; validation, all co-authors contributed to validation of this
study; formal analysis, S.-A.L.; writing—original draft preparation, S.-A.L.; writing—review and
editing, all co-authors contributed to the review and editing of the original draft; visualization, S.-A.L.;
supervision, A.K. All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by the European Union and Greek national funds through the Op-
erational Program Competitiveness, Entrepreneurship and Innovation, under the call RESEARCH—
CREATE—INNOVATE (project code: T1EDK-00681).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Acknowledgments: This research has been co-financed by the European Union and Greek national
funds through the Operational Program Competitiveness, Entrepreneurship and Innovation, un-
der the call RESEARCH—CREATE—INNOVATE (project code: T1EDK-00681). We acknowledge
support of this work by the project “PANhellenic infrastructure for Atmospheric Composition and
climatE change” (MIS 5021516) which is implemented under the Action “Reinforcement of the Re-
search and Innovation Infrastructure”, funded by the Operational Programme “Competitiveness,
Entrepreneurship and Innovation” (NSRF 2014-2020) and co-financed by Greece and the European
Union (European Regional Development Fund). DLR’s contribution to the study benchmarking
experiment was funded by the German Federal Ministry of for Economic Affairss and Technology
Climate Action within the WOBAS A project (Grant Agreement no. 0324307A) while the contributions
on the definition of evaluation metrics were funded within the Solrev project (Grant Agreement
no. 03EE1010C). Niels Hendrikx, Lennard Visser and Wilfried van Sark acknowledge support from
the Dutch Research Council NWO in the framework of the Energy Systems Integration & Big Data
programme, project eNErgy intrAneTs (NEAT). This work constitutes the main contribution of several
experts to activity 3.4 of the Task 16 IEA-PVPS.

https://www.mdpi.com/article/xxx/s1


Energies 2022, 15, 6191 16 of 17

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations
The following abbreviations are used in this manuscript:

ASI All-sky Imager
CBH Cloud base height
CC Cloud cluster
CDF Cumulative distribution function
CMVs Cloud motion vectors
D Time horizon
DHI Direct horizontal irradiance
DNI Direct normal irradiance
FNR False No-Ramp
FR False Ramp
GHI Global horizontal irradiance
IEA PVPS International Energy Agency’s Photovoltaic Power Systems Program
LSTM Long Short-Term Memory
MAD Mean absolute deviation
nGHI Normalized global horizontal irradiance
PSPI Physics-based Smart Persistence model for Intra-hour forecasting of solar radiation
PSA Plataforma Solar de Almería
RE Ramp Event
RMSD Root mean square deviation
RR Ramp Rate
SD Swinging Door
SZA Solar zenith angle
Thr Threshold limit
TNR True No-Ramp
TR True Ramp
TW 20-minute time window analysis
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